Computer and Internet Use Among People with Disabilities

by

H. Stephen Kaye, Ph.D.
Disability Statistics Center
Institute for Health and Aging
University of California
San Francisco, California

March, 2000

National Institute on Disability and Rehabilitation Research
U.S. Department of Education
Acknowledgments

The author is grateful to the following individuals for their contributions to this report: Mitch LaPlante, for guidance on the analysis methods; Jack McNeil and Alexandra Enders, for helpful feedback; David Keer, project officer, and the staff of NIDRR; and Will Leber, graphic designer.

Disclaimer

This report was prepared under ED Grant #H133B980045. The views expressed herein are those of the participants. No official endorsement by the U.S. Department of Education is intended or should be inferred.

Availability

Individuals with disabilities may obtain this document in an alternate format (for example: Braille, large print, audiotape, or computer diskette) on request.

Individuals who use a telecommunications device for the deaf (TDD) may call the Federal Information Relay Service (FIRS) at 1-800-877-8339 between 8 a.m. and 8 p.m., Eastern time, Monday through Friday.

To obtain additional printed copies of this publication, please contact the Disability Statistics Center or NIDRR:

Disability Statistics Center
University of California, San Francisco
Box 0646, Laurel Heights
3333 California Street
San Francisco, CA 94143-0646
http://www.dsc.ucsf.edu
E-mail: distats@itsa.ucsf.edu
(415) 502-5210

David Keer
U.S. Department of Education
OSERS/NIDRR
Switzer Building, Room 3431
Washington, D.C. 20202
http://www.ed.gov/offices/OSERS/NIDRR
E-mail: david_keer@ed.gov
(202) 205-5633

Suggested Citation

CONTENTS

INTRODUCTION ...1

DATA SOURCE AND METHODS ..3

ANALYSIS RESULTS ...5
 Age and Gender ..5
 Employment Status ...8
 Educational Attainment ..8
 Family Income ..8
 Race and Ethnicity ...10
 Reasons for Internet Use ..11

CONCLUSIONS ...13

REFERENCES ...13
INTRODUCTION

Computer technology and the Internet have a tremendous potential to broaden the lives and increase the independence of people with disabilities. Those who have difficulty leaving their homes can now log in and order groceries, shop for appliances, research health questions, participate in online discussions, catch up with friends, or make new ones. Blind people, who used to wait months or years for the information they needed to be made available in Braille or on audiotape, can now access the very same news stories, magazine articles, government reports, and information on consumer products at the very same time it becomes available to the sighted population. People who have difficulty holding a pen or using a keyboard can use the latest speech recognition software to write letters, pay their bills, or perform work-related tasks.

These new technologies hold great promise, but as this report makes abundantly clear, the computer revolution has left the vast majority of people with disabilities behind. Only one-quarter of people with disabilities own computers, and only one-tenth ever make use of the Internet. Elderly people with disabilities, and those with low incomes or low educational attainment, are even less likely to take advantage of these new technologies. African Americans with disabilities also have an especially low rate of computer and Internet use.

Extensive media coverage was devoted to a recent analysis (National Telecommunications and Information Administration, 1999) documenting huge racial and ethnic gaps in access to electronic technologies in the United States. The present report, using data from the same survey, demonstrates that gaps in computer and Internet use based on disability status are just as large as those based on race and ethnicity.
DATA SOURCE AND METHODS

The Current Population Survey (CPS) is a nationally representative survey of approximately 50,000 U.S. households each month. Conducted by the Census Bureau for the Bureau of Labor Statistics, the basic CPS questionnaire focuses on employment status and household income. The sample consists of eight panels, with a new panel brought into rotation every month. Households in each panel are interviewed eight times—for four months in a row, and then, after an eight-month break, during the same four calendar months of the following year.

Supplementary questionnaires are often included along with the basic monthly survey. The present analysis is based on data from two such supplements: the 1998 Computer and Internet Use Supplement, conducted in December of that year, and the 1999 Annual Demographic Survey, conducted three months later, in March.

The Computer and Internet Use Supplement contained questions on household computer ownership and Internet access, as well as questions on specific uses of the Internet by each household member. It was conducted for the National Telecommunications and Information Administration (NTIA) as a means of surveying the degree of penetration of computer technology in the general population. NTIA’s analysis found significant gaps in access to computers and the Internet, based on factors such as family income, race and ethnicity, and educational attainment.

Disability is not mentioned in NTIA’s report, because the supplement was not designed to measure computer and Internet use among people with disabilities. No questions on disability status were asked in the supplement, nor does the basic monthly survey provide any useful way of identifying a general sample of the population with disabilities.1

Unlike the monthly survey, however, the March demographic supplement does include a single, broad question on work disability. Respondents are asked whether anyone in the household has “a health problem or disability which prevents them from working or which limits the kind or amount of work they can do.” The question provides a reasonable way of identifying a sample of persons at least 15 years of age who are limited in their ability to work. Work disability is a narrower and more problematic definition of disability than activity limitation or functional limitation; it is also of somewhat dubious validity for people without work histories, and for those elderly people who retired from work long ago.

Because of the longitudinal nature of the CPS, it is possible to link data from the two above-mentioned supplemental surveys. Of the eight panels interviewed in December 1998, two were re-interviewed the following March.2 Thus, for one-quarter of the sample, minus missing responses, it is possible to obtain the work disability status of those persons whose computer and Internet usage was separately measured.

The two panels for which both surveys were administered number 30,128 records, out of a total of 122,935 records for the entire Computer/Internet supplement. In 91.6 percent of these cases it is possible to merge data from the two supplements; the remaining 8.4 percent (2522 records) have been dropped for lack of work disability data. Simple non-response is one reason for missing data. Another is that the CPS is a survey of households rather than of families, and no attempt is made to recontact families who moved between interviews. The new residents of the household are interviewed instead, which leaves us with no information on the disability status of the persons of interest.

The merged sample used in this analysis numbers 27,606 records, or 22.5 percent of the full Computer/Internet Supplement sample. Some 2,196 records represent persons identified as having work disabilities. The reduced sample lacks the statistical power for a highly detailed analysis of the computer and Internet use habits of people with disabilities, but it is adequate to provide comparisons of computer ownership and Internet use among broad sub-populations with and without work disabilities.

For the purposes of evaluating computer and

1 It would be possible, however, to use the monthly survey to analyze the population unable to work because of health, but this is an overly restrictive definition of disability.

2 It is fortuitous that the survey was conducted in December, so that there was a partial overlap with the March demographic supplement. The previous supplement on computer and Internet use, conducted in October 1997, had no panels that overlapped with March 1997 or 1998.
probability of a family changing residence during the three-month lag between interviews is also likely to vary with these characteristics. In order to reduce biases due to missing data (as well as to account for the missing panels), individual records in the merged sample have been re-weighted so as to obtain the same population estimate as the full sample in 60 age-sex-race cells (15 age bins, 2 sexes, and 2 races—black vs. other).

In the analysis of households, the re-weighting (based on the original household weight) uses the age, sex, and race of the first respondent listed in the survey roster. For this analysis, 40 age-sex-race cells are used for post-stratification, with the number of age bins reduced to 10 so that the few households headed by persons under 20 years of age are all relegated to a single age bin.

Because the estimates in this report are based on a sample of the population, they are subject to sampling error. Estimates of sampling errors have been calculated using formulas provided by the Bureau of the Census (Bureau of the Census, 1999). In the data tables, estimates with low statistical reliability (standard error greater than 30 percent of the estimate) are flagged with an asterisk. All comparisons mentioned in the text have been tested for statistical significance, and, unless otherwise stated, are significant at the 95 percent confidence level or greater (p<.05).

3 The stratum and primary sampling unit data necessary for direct estimation of standard errors are not provided in the CPS public use data files.
Of the 20.9 million Americans aged 15 and over with work disabilities (see above for definition), 5.0 million have computers at home (Table A). Less than half of this group, 2.4 million people, have access to the Internet via their home computer, whether or not they choose to take advantage of it. Some 1.5 million actually use the Internet at home; 2.1 million people with disabilities make use of the Internet either at home or on some other computer. As shown in Figure 1, people with disabilities are less than half as likely as their non-disabled counterparts to have access to a computer at home (23.9 vs. 51.7 percent). The gap in Internet access is even more striking: Almost three times as many people without disabilities have the ability to connect to the Internet at home as those with disabilities—31.1 versus 11.4 percent.

Whether through a home computer or one at work, at school, or in a library, people with disabilities are far less likely than those without disabilities to make use of the Internet. Only one-tenth (9.9 percent) of people with disabilities connect to the Internet, compared to almost four-tenths (38.1 percent) of those without disabilities. When they do use the Internet, it is likely to be done at home (7.2 percent use the Internet at home, compared to 25.9 percent of those without disabilities). Internet use away from home is much less common for those with disabilities, in part because most people with work disabilities are not employed: Only 3.9 percent of those with disabilities use the Internet outside of the home, compared to 20.6 percent of their non-disabled counterparts.

Age and Gender

Although the disability population is heavily skewed toward the older ages, and older people

<p>| Table A. Computer ownership and Internet use, by disability status and age group, ages 15 and over. |
|---|---|</p>
<table>
<thead>
<tr>
<th>Work disability</th>
<th>No disability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number (1000s)</td>
<td>%</td>
</tr>
<tr>
<td>Persons aged 15 and above</td>
<td>20,877</td>
</tr>
<tr>
<td>Has computer in household</td>
<td>4,983</td>
</tr>
<tr>
<td>Has Internet access at home</td>
<td>2,379</td>
</tr>
<tr>
<td>Uses Internet at home</td>
<td>2,076</td>
</tr>
<tr>
<td>elsewhere</td>
<td>1,512</td>
</tr>
<tr>
<td>821</td>
<td>3.9</td>
</tr>
<tr>
<td>Persons aged 15–64</td>
<td>12,579</td>
</tr>
<tr>
<td>Has computer</td>
<td>4,106</td>
</tr>
<tr>
<td>Has Internet access at home</td>
<td>1,991</td>
</tr>
<tr>
<td>Uses Internet</td>
<td>1,896</td>
</tr>
<tr>
<td>Persons aged 65 and above</td>
<td>8,289</td>
</tr>
<tr>
<td>Has computer</td>
<td>877</td>
</tr>
<tr>
<td>Has Internet access at home</td>
<td>388</td>
</tr>
<tr>
<td>Uses Internet</td>
<td>180</td>
</tr>
</tbody>
</table>

†Difference in rates between populations with and without work disability is statistically significant at the 95% confidence level or better.

*Estimate has low statistical reliability (standard error exceeds 30 percent of estimate).
are less likely to use new technologies, the above-
mentioned gaps are not accounted for by differ-
ences in age. As Figure 2 shows, significant differ-
ences remain in rates of computer ownership,
Internet access, and Internet use for both the
non-elderly (ages 15–64) and elderly (65 and
above) populations.

Only one-third (32.6 percent) of non-elderly
persons with work disabil-
ities have computers
in their homes, com-
pared to more than half
(55.6 percent) of those
without disabilities. Once again, only about half of
those computer-owners with disabilities can access
the Internet—15.8 percent of the disability popula-
tion, compared to 33.9 percent of the non-disabled.
And the ratio of Internet use is nearly 3 to 1: 42.3
percent of people without disabilities use the
Internet, compared to only 15.1 percent of those
with disabilities.

Among the elderly, only one-quarter (25.3 per-
cent) of those without disabilities have computers,
but a still smaller fraction—only one-tenth, or 10.6
percent—of those with disabilities have them.
Internet access is available for about half of com-
puter owners in each group (12.3 percent of non-
disabled and 4.7 percent of those with disabilities).
Although actual use of the Internet is rare among
the elderly, it is far higher for those without disabil-
ities (8.9 percent) than for those with (2.2 percent).

For the population as a whole, the gender gap
in computer ownership and Internet use is statisti-
cally significant but surprisingly small. Just over
half (51.6 percent) of men and just under half (48.7
percent) of women have access to a computer at
home; one-third (33.3 percent) of men and just
under a third (30.5 percent) of women use the
Internet. Among the population with work disabil-
ities, there are no statistically significant gen-
der gaps (Table B). The gaps between those with

Figure 1. Computer ownership and Internet use,
by disability status.

Figure 2. Computer ownership and Internet use,
by age group and disability status.
Table B. Computer ownership and Internet use, by disability status, gender, employment status, educational attainment, and family income, ages 15 and over.

<table>
<thead>
<tr>
<th></th>
<th>With work disability</th>
<th>No work disability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total population</td>
<td>Computer in household</td>
</tr>
<tr>
<td></td>
<td>Number (1000s)</td>
<td>Number (1000s)</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>9,587</td>
<td>2,383</td>
</tr>
<tr>
<td>Female</td>
<td>11,289</td>
<td>2,600</td>
</tr>
<tr>
<td>Employment status (ages 18–64 only)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employed</td>
<td>3,351</td>
<td>1,427</td>
</tr>
<tr>
<td>Not employed</td>
<td>9,024</td>
<td>2,608</td>
</tr>
<tr>
<td>Educational attainment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not high school grad</td>
<td>7,461</td>
<td>949</td>
</tr>
<tr>
<td>High school grad</td>
<td>11,418</td>
<td>3,105</td>
</tr>
<tr>
<td>College grad</td>
<td>1,998</td>
<td>929</td>
</tr>
<tr>
<td>Family income</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less than $20,000</td>
<td>8,614</td>
<td>950</td>
</tr>
<tr>
<td>$20,000 or more</td>
<td>8,512</td>
<td>3,403</td>
</tr>
</tbody>
</table>

†Difference in rates between households with and without work disability is statistically significant at the 95% confidence level or better.
*Estimate has low statistical reliability (standard error exceeds 30 percent of estimate).
and without disabilities remain large and significant for both sexes, however. For example, 24.9 percent of men with disabilities own computers, compared to 53.2 percent without; 23.0 percent of women with disabilities own computers, versus 50.3 percent without.

Employment Status

For working-age adults, having a job can make it financially feasible to buy a computer; often, on-the-job access to computers and the Internet is also provided, along with training in how to use them. It is not surprising, therefore, that people with and without work disabilities are more likely to have computers and use the Internet if they are employed than if they are not (Figure 3 and Table B).

But even when they do have jobs, people with disabilities are significantly less likely to gain access to these new technologies: Among employed people with work disabilities, 42.6 percent have computers and 26.4 percent use the Internet, compared to 56.9 and 44.0 percent of their non-disabled counterparts. All around, rates are significantly lower among those without jobs: Only three-tenths (28.9 percent) of those with disabilities have computers, and only about one-tenth (10.8 percent) use the Internet.

Educational Attainment

People who are well educated are far more likely to have the skills, not to mention the financial resources, necessary to buy and use computer technology. But regardless of the level of educational attainment, people with disabilities have much lower rates of computer ownership and Internet use than their non-disabled peers (Figure 4).

Only one-eighth (12.7 percent) of people with disabilities who have not graduated from high school own computers. This figure compares with one-third (34.5 percent) of non-high-school-graduates without disabilities, almost half (46.5 percent) of college graduates with disabilities, and three-quarters (73.4 percent) of college graduates without disabilities.

Even more striking is the fact that only 2.4 percent of people with disabilities who lack high school diplomas use the Internet. Those without disabilities are almost 10 times as likely to connect (22.5 percent), and those with disabilities who have college degrees are still more likely (30.2 percent). But even this last group has less than half the likelihood of Internet use as college graduates without disabilities, almost two-thirds (63.9 percent) of whom are Internet users.

Family Income

Half (50.3 percent) of people with work disabilities have family incomes of under $20,000 per year. For this group, buying a computer and paying the monthly fees of an Internet service provider may seem like a frivolous expense in relation to the basic necessities of life. Low-income
Table C. Household computer and Internet access, by race, ethnicity, and disability status of household members.

<table>
<thead>
<tr>
<th>With work disability</th>
<th></th>
<th></th>
<th>No work disability</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total households</td>
<td>Computer in household</td>
<td>Household has Internet access</td>
<td></td>
<td>Total households</td>
</tr>
<tr>
<td></td>
<td>Number (1000s)</td>
<td>Number (1000s)</td>
<td>%</td>
<td>Number (1000s)</td>
<td>%</td>
</tr>
<tr>
<td>All households</td>
<td>17,709</td>
<td>4,298</td>
<td>24.3</td>
<td>2,144</td>
<td>12.1</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>14,297</td>
<td>3,833</td>
<td>26.8</td>
<td>1,905</td>
<td>13.3</td>
</tr>
<tr>
<td>African American</td>
<td>2,910</td>
<td>311</td>
<td>10.7</td>
<td>141</td>
<td>4.8</td>
</tr>
<tr>
<td>Native American</td>
<td>208</td>
<td>43</td>
<td>20.7</td>
<td>41</td>
<td>19.5</td>
</tr>
<tr>
<td>Asian/Pacific Isl.</td>
<td>294</td>
<td>111</td>
<td>37.8</td>
<td>58</td>
<td>19.7</td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic</td>
<td>1,257</td>
<td>239</td>
<td>19.0</td>
<td>106</td>
<td>8.5</td>
</tr>
<tr>
<td>Non-Hispanic</td>
<td>16,452</td>
<td>4,059</td>
<td>24.7</td>
<td>2,038</td>
<td>12.4</td>
</tr>
</tbody>
</table>

Note: A household is classified as having a work disability if any member has a work disability. Race and ethnicity are those of the first person listed in the survey roster, generally the person in whose name the home is owned or rented. Households of Hispanic ethnicity are also included in the appropriate racial categories.

† Difference in rates between households with and without work disability is statistically significant at the 95% confidence level or better.
¥ Rate is significantly different from that of whites (for racial groups) or non-Hispanics (for Hispanics) at the 95% confidence level or better.
* Estimate has low statistical reliability (standard error exceeds 30 percent of estimate).
people with and without disabilities own computers and use the Internet at rates much lower than those of their more financially comfortable counterparts (Figure 5).

In both income categories, people with disabilities are significantly less likely to own computers: half as likely for the low-income group (11.0 percent vs. 22.2 percent), and two-thirds as likely for the higher-income group (40.0 vs. 61.2 percent). Use of the Internet is one-quarter as likely among the low-income group (4.9 percent for those with disabilities vs. 19.0 percent for those without) and just over one-third as likely for the higher-income group (16.6 percent vs. 45.2 percent).

Race and Ethnicity

Table C and Figure 6 present statistics on household computer ownership and Internet access, broken down into racial and ethnic categories (see Data Source and Methods for details on racial and ethnic classification). Households are classified as having work disabilities if one or more members of the household have a work disability.

Within each racial and ethnic group, the rate of computer ownership is much lower when there is a disability present in the household than when there is not. Among white households, those with disabilities are about half as likely to own computers as are those without (26.8 vs. 50.2 percent). Among African American households, only one-tenth (10.7 percent) of those with disabilities have computers, compared to one-quarter (26.3 percent) of households having no members with disabilities. Some 37.8 percent of Asian and Pacific Islander households with disabilities have computers, compared to 56.9 percent of those without disabilities. And among Hispanic households, 19.0 percent of those with disabilities have computers, versus 32.7 percent of those with no disability.

There are also large gaps in Internet access within the racial categories. Across the board, households having members with work disabilities are roughly half as likely to be connected to the Internet as those without disabled members (for white households, 13.3 vs. 30.7 percent; for black households, 4.8 vs. 11.4 percent; for Asian/Pacific Islander households, 19.7 vs. 35.9 percent).

Among those households having members with work disabilities, most of the differences in rates between racial and ethnic groups are not statistically significant. But one set of differences is significant, and it bears pointing out: Among households with work disabilities, African

4 For Native Americans, the gaps in computer ownership and Internet access are not statistically significant and have not been shown in Figure 6.

5 Among people of Hispanic origin, the difference in Internet access rates is not statistically significant.
American households are much less likely than white households to have a computer (10.7 vs. 26.8 percent) or have access to the Internet (4.8 vs. 13.3 percent).

It is also worth noting that the rates for white households with disabilities (26.8 percent of which have computers and 13.3 percent of which have access to the Internet) are roughly equal to those of African American households without disabilities (26.3 and 11.4 percent, respectively). Thus, in comparing these populations, disability and race can be seen to be equally significant factors in determining the household’s likelihood of exposure to computer technology.

Reasons for Internet Use

By far the most common reasons that people with disabilities cite for using the Internet are sending and receiving electronic mail (1.4 million people, or 67.1 percent of the 2.1 million Internet users) and searching for information (1.3 million, or 62.8 percent; see Table D). These are also the two top-ranked reasons for Internet use among people without disabilities.

Four-tenths (39.0 percent) of Internet users with disabilities read the news online, check the weather forecast, or obtain sports scores. Three-tenths (29.3 percent) take courses over the Internet or use online resources to help with schoolwork. One-quarter (26.2 percent) of Internet users with disabilities use the Internet for job-related tasks, a significantly lower figure than the 43.1 percent of Internet users without disabilities, who are more likely to have jobs. One-sixth (17.0 percent) use the Internet for shopping, paying bills, or other commercial activities, and 15.9 percent use it to look for employment opportunities.

Table D. Reasons for using the Internet, by disability status, ages 15 and over.

<table>
<thead>
<tr>
<th>Reason</th>
<th>Work disability</th>
<th>No disability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number (1000s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electronic mail</td>
<td>1,393</td>
<td>54,335</td>
</tr>
<tr>
<td>Search for info.</td>
<td>1,304</td>
<td>46,466</td>
</tr>
<tr>
<td>News, weather, sports</td>
<td>810</td>
<td>32,529</td>
</tr>
<tr>
<td>Courses, schoolwork</td>
<td>608</td>
<td>25,456</td>
</tr>
<tr>
<td>Job-related tasks</td>
<td>543</td>
<td>31,182</td>
</tr>
<tr>
<td>Shop, pay bills, etc.</td>
<td>353</td>
<td>16,255</td>
</tr>
<tr>
<td>Search for jobs</td>
<td>330</td>
<td>12,066</td>
</tr>
<tr>
<td>Other</td>
<td>498</td>
<td>13,075</td>
</tr>
</tbody>
</table>

People with disabilities are perhaps the single segment of society with the most to gain from the new technologies of the electronic age. Yet they have among the lowest rates of use of these technologies. As a result, the potential benefits of computers and the Internet to the disability community are a long way from being realized.

The problem is largely one of access. Many people with disabilities are poor and can little afford a computer capable of navigating the Internet, the specialized software they might need in order to adapt it to their needs, and the monthly charges imposed for access to the Internet. Many people with disabilities, whether elderly or not, lack an awareness of the potential benefits of this technology, an understanding that, for themselves especially, a computer and an Internet connection could become not a toy, but an important tool with which to gain greater independence and social integration.

The advent of lower-cost computing—including the free computers that come with an extended subscription to an Internet service provider—may help to make this technology more available. Simpler user interfaces, which would encourage use by people who are less comfortable with the technology, might also help people with disabilities to overcome any resistance they might have to exploring the Internet. But it seems clear that, in order to clarify the benefits that this technology can offer to the population with disabilities, a concerted program of education will be needed, along with training and support in the use of the hardware and software, before significant progress is made in closing the enormous gaps in technology access that have been identified in this report.

REFERENCES
